
International Journal of Computer Vision 57(2), 137–154, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Robust Real-Time Face Detection

PAUL VIOLA
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

viola@microsoft.com

MICHAEL J. JONES
Mitsubishi Electric Research Laboratory, 201 Broadway, Cambridge, MA 02139, USA

mjones@merl.com

Received September 10, 2001; Revised July 10, 2003; Accepted July 11, 2003

Abstract. This paper describes a face detection framework that is capable of processing images extremely rapidly
while achieving high detection rates. There are three key contributions. The first is the introduction of a new
image representation called the “Integral Image” which allows the features used by our detector to be computed
very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algo-
rithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of
potential features. The third contribution is a method for combining classifiers in a “cascade” which allows back-
ground regions of the image to be quickly discarded while spending more computation on promising face-like
regions. A set of experiments in the domain of face detection is presented. The system yields face detection perfor-
mance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and
Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per
second.

Keywords: face detection, boosting, human sensing

1. Introduction

This paper brings together new algorithms and insights
to construct a framework for robust and extremely rapid
visual detection. Toward this end we have constructed
a frontal face detection system which achieves detec-
tion and false positive rates which are equivalent to
the best published results (Sung and Poggio, 1998;
Rowley et al., 1998; Osuna et al., 1997a; Schneiderman
and Kanade, 2000; Roth et al., 2000). This face detec-
tion system is most clearly distinguished from previ-
ous approaches in its ability to detect faces extremely
rapidly. Operating on 384 by 288 pixel images, faces
are detected at 15 frames per second on a conventional
700 MHz Intel Pentium III. In other face detection
systems, auxiliary information, such as image differ-

ences in video sequences, or pixel color in color im-
ages, have been used to achieve high frame rates. Our
system achieves high frame rates working only with
the information present in a single grey scale image.
These alternative sources of information can also be in-
tegrated with our system to achieve even higher frame
rates.

There are three main contributions of our face detec-
tion framework. We will introduce each of these ideas
briefly below and then describe them in detail in sub-
sequent sections.

The first contribution of this paper is a new image
representation called an integral image that allows for
very fast feature evaluation. Motivated in part by the
work of Papageorgiou et al. (1998) our detection sys-
tem does not work directly with image intensities. Like

138 Viola and Jones

these authors we use a set of features which are rem-
iniscent of Haar Basis functions (though we will also
use related filters which are more complex than Haar
filters). In order to compute these features very rapidly
at many scales we introduce the integral image repre-
sentation for images (the integral image is very similar
to the summed area table used in computer graphics
(Crow, 1984) for texture mapping). The integral im-
age can be computed from an image using a few op-
erations per pixel. Once computed, any one of these
Haar-like features can be computed at any scale or lo-
cation in constant time.

The second contribution of this paper is a simple
and efficient classifier that is built by selecting a small
number of important features from a huge library of po-
tential features using AdaBoost (Freund and Schapire,
1995). Within any image sub-window the total num-
ber of Haar-like features is very large, far larger than
the number of pixels. In order to ensure fast classifi-
cation, the learning process must exclude a large ma-
jority of the available features, and focus on a small
set of critical features. Motivated by the work of Tieu
and Viola (2000) feature selection is achieved using
the AdaBoost learning algorithm by constraining each
weak classifier to depend on only a single feature. As a
result each stage of the boosting process, which selects
a new weak classifier, can be viewed as a feature selec-
tion process. AdaBoost provides an effective learning
algorithm and strong bounds on generalization perfor-
mance (Schapire et al., 1998).

The third major contribution of this paper is a method
for combining successively more complex classifiers
in a cascade structure which dramatically increases the
speed of the detector by focusing attention on promis-
ing regions of the image. The notion behind focus
of attention approaches is that it is often possible to
rapidly determine where in an image a face might oc-
cur (Tsotsos et al., 1995; Itti et al., 1998; Amit and
Geman, 1999; Fleuret and Geman, 2001). More com-
plex processing is reserved only for these promising
regions. The key measure of such an approach is the
“false negative” rate of the attentional process. It must
be the case that all, or almost all, face instances are
selected by the attentional filter.

We will describe a process for training an extremely
simple and efficient classifier which can be used as a
“supervised” focus of attention operator.1 A face de-
tection attentional operator can be learned which will
filter out over 50% of the image while preserving 99%
of the faces (as evaluated over a large dataset). This

filter is exceedingly efficient; it can be evaluated in 20
simple operations per location/scale (approximately 60
microprocessor instructions).

Those sub-windows which are not rejected by the
initial classifier are processed by a sequence of classi-
fiers, each slightly more complex than the last. If any
classifier rejects the sub-window, no further processing
is performed. The structure of the cascaded detection
process is essentially that of a degenerate decision tree,
and as such is related to the work of Fleuret and Geman
(2001) and Amit and Geman (1999).

The complete face detection cascade has 38 classi-
fiers, which total over 80,000 operations. Nevertheless
the cascade structure results in extremely rapid average
detection times. On a difficult dataset, containing 507
faces and 75 million sub-windows, faces are detected
using an average of 270 microprocessor instructions
per sub-window. In comparison, this system is about
15 times faster than an implementation of the detection
system constructed by Rowley et al. (1998).2

An extremely fast face detector will have broad prac-
tical applications. These include user interfaces, im-
age databases, and teleconferencing. This increase in
speed will enable real-time face detection applications
on systems where they were previously infeasible. In
applications where rapid frame-rates are not necessary,
our system will allow for significant additional post-
processing and analysis. In addition our system can be
implemented on a wide range of small low power de-
vices, including hand-helds and embedded processors.
In our lab we have implemented this face detector on a
low power 200 mips Strong Arm processor which lacks
floating point hardware and have achieved detection at
two frames per second.

1.1. Overview

The remaining sections of the paper will discuss the
implementation of the detector, related theory, and ex-
periments. Section 2 will detail the form of the features
as well as a new scheme for computing them rapidly.
Section 3 will discuss the method in which these fea-
tures are combined to form a classifier. The machine
learning method used, a application of AdaBoost, also
acts as a feature selection mechanism. While the classi-
fiers that are constructed in this way have good compu-
tational and classification performance, they are far too
slow for a real-time classifier. Section 4 will describe a
method for constructing a cascade of classifiers which

Robust Real-Time Face Detection 139

together yield an extremely reliable and efficient face
detector. Section 5 will describe a number of experi-
mental results, including a detailed description of our
experimental methodology. Finally Section 6 contains
a discussion of this system and its relationship to re-
lated systems.

2. Features

Our face detection procedure classifies images based
on the value of simple features. There are many moti-
vations for using features rather than the pixels directly.
The most common reason is that features can act to en-
code ad-hoc domain knowledge that is difficult to learn
using a finite quantity of training data. For this system
there is also a second critical motivation for features:
the feature-based system operates much faster than a
pixel-based system.

The simple features used are reminiscent of Haar
basis functions which have been used by Papageorgiou
et al. (1998). More specifically, we use three kinds of
features. The value of a two-rectangle feature is the
difference between the sum of the pixels within two
rectangular regions. The regions have the same size
and shape and are horizontally or vertically adjacent
(see Fig. 1). A three-rectangle feature computes the
sum within two outside rectangles subtracted from the
sum in a center rectangle. Finally a four-rectangle fea-
ture computes the difference between diagonal pairs of
rectangles.

Given that the base resolution of the detector is
24 × 24, the exhaustive set of rectangle features is

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature.

quite large, 160,000. Note that unlike the Haar basis,
the set of rectangle features is overcomplete.3

2.1. Integral Image

Rectangle features can be computed very rapidly using
an intermediate representation for the image which we
call the integral image.4 The integral image at location
x, y contains the sum of the pixels above and to the left
of x, y, inclusive:

i i(x, y) =
∑

x ′≤x,y′≤y

i(x ′, y′),

where i i(x, y) is the integral image and i(x, y) is the
original image (see Fig. 2). Using the following pair of
recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (1)

i i(x, y) = i i(x − 1, y) + s(x, y) (2)

(where s(x, y) is the cumulative row sum, s(x, −1) =
0, and i i(−1, y) = 0) the integral image can be com-
puted in one pass over the original image.

Using the integral image any rectangular sum can be
computed in four array references (see Fig. 3). Clearly
the difference between two rectangular sums can be
computed in eight references. Since the two-rectangle
features defined above involve adjacent rectangular
sums they can be computed in six array references,
eight in the case of the three-rectangle features, and
nine for four-rectangle features.

One alternative motivation for the integral im-
age comes from the “boxlets” work of Simard et al.

Figure 2. The value of the integral image at point (x, y) is the sum
of all the pixels above and to the left.

140 Viola and Jones

Figure 3. The sum of the pixels within rectangle D can be computed
with four array references. The value of the integral image at location
1 is the sum of the pixels in rectangle A. The value at location 2 is
A + B, at location 3 is A + C , and at location 4 is A + B + C + D.
The sum within D can be computed as 4 + 1 − (2 + 3).

(1999). The authors point out that in the case of linear
operations (e.g. f · g), any invertible linear operation
can be applied to f or g if its inverse is applied to the
result. For example in the case of convolution, if the
derivative operator is applied both to the image and the
kernel the result must then be double integrated:

f ∗ g =
∫ ∫

(f ′ ∗ g′).

The authors go on to show that convolution can be
significantly accelerated if the derivatives of f and g
are sparse (or can be made so). A similar insight is that
an invertible linear operation can be applied to f if its
inverse is applied to g:

(f ′′) ∗
(∫ ∫

g

)
= f ∗ g.

Viewed in this framework computation of the rect-
angle sum can be expressed as a dot product, i ·r , where
i is the image and r is the box car image (with value
1 within the rectangle of interest and 0 outside). This
operation can be rewritten

i · r =
(∫ ∫

i

)
· r ′′.

The integral image is in fact the double integral of the
image (first along rows and then along columns). The
second derivative of the rectangle (first in row and then
in column) yields four delta functions at the corners of

the rectangle. Evaluation of the second dot product is
accomplished with four array accesses.

2.2. Feature Discussion

Rectangle features are somewhat primitive when
compared with alternatives such as steerable filters
(Freeman and Adelson, 1991; Greenspan et al., 1994).
Steerable filters, and their relatives, are excellent for the
detailed analysis of boundaries, image compression,
and texture analysis. While rectangle features are also
sensitive to the presence of edges, bars, and other sim-
ple image structure, they are quite coarse. Unlike steer-
able filters, the only orientations available are vertical,
horizontal and diagonal. Since orthogonality is not cen-
tral to this feature set, we choose to generate a very
large and varied set of rectangle features. Typically the
representation is about 400 times overcomplete. This
overcomplete set provides features of arbitrary aspect
ratio and of finely sampled location. Empirically it ap-
pears as though the set of rectangle features provide
a rich image representation which supports effective
learning. The extreme computational efficiency of rect-
angle features provides ample compensation for their
limitations.

In order to appreciate the computational advantage
of the integral image technique, consider a more con-
ventional approach in which a pyramid of images is
computed. Like most face detection systems, our de-
tector scans the input at many scales; starting at the
base scale in which faces are detected at a size of
24 × 24 pixels, a 384 by 288 pixel image is scanned
at 12 scales each a factor of 1.25 larger than the last.
The conventional approach is to compute a pyramid of
12 images, each 1.25 times smaller than the previous
image. A fixed scale detector is then scanned across
each of these images. Computation of the pyramid,
while straightforward, requires significant time. Imple-
mented efficiently on conventional hardware (using bi-
linear interpolation to scale each level of the pyramid) it
takes around .05 seconds to compute a 12 level pyramid
of this size (on an Intel PIII 700 MHz processor).5

In contrast we have defined a meaningful set of rect-
angle features, which have the property that a single
feature can be evaluated at any scale and location in a
few operations. We will show in Section 4 that effec-
tive face detectors can be constructed with as few as two
rectangle features. Given the computational efficiency
of these features, the face detection process can be com-
pleted for an entire image at every scale at 15 frames per

Robust Real-Time Face Detection 141

second, about the same time required to evaluate the 12
level image pyramid alone. Any procedure which re-
quires a pyramid of this type will necessarily run slower
than our detector.

3. Learning Classification Functions

Given a feature set and a training set of positive and
negative images, any number of machine learning ap-
proaches could be used to learn a classification func-
tion. Sung and Poggio use a mixture of Gaussian model
(Sung and Poggio, 1998). Rowley et al. (1998) use a
small set of simple image features and a neural net-
work. Osuna et al. (1997b) used a support vector ma-
chine. More recently Roth et al. (2000) have proposed
a new and unusual image representation and have used
the Winnow learning procedure.

Recall that there are 160,000 rectangle features as-
sociated with each image sub-window, a number far
larger than the number of pixels. Even though each
feature can be computed very efficiently, computing
the complete set is prohibitively expensive. Our hy-
pothesis, which is borne out by experiment, is that a
very small number of these features can be combined
to form an effective classifier. The main challenge is to
find these features.

In our system a variant of AdaBoost is used both
to select the features and to train the classifier (Freund
and Schapire, 1995). In its original form, the AdaBoost
learning algorithm is used to boost the classification
performance of a simple learning algorithm (e.g., it
might be used to boost the performance of a simple per-
ceptron). It does this by combining a collection of weak
classification functions to form a stronger classifier. In
the language of boosting the simple learning algorithm
is called a weak learner. So, for example the percep-
tron learning algorithm searches over the set of possible
perceptrons and returns the perceptron with the lowest
classification error. The learner is called weak because
we do not expect even the best classification function to
classify the training data well (i.e. for a given problem
the best perceptron may only classify the training data
correctly 51% of the time). In order for the weak learner
to be boosted, it is called upon to solve a sequence of
learning problems. After the first round of learning, the
examples are re-weighted in order to emphasize those
which were incorrectly classified by the previous weak
classifier. The final strong classifier takes the form of a
perceptron, a weighted combination of weak classifiers
followed by a threshold.6

The formal guarantees provided by the AdaBoost
learning procedure are quite strong. Freund and
Schapire proved that the training error of the strong
classifier approaches zero exponentially in the number
of rounds. More importantly a number of results
were later proved about generalization performance
(Schapire et al., 1997). The key insight is that gen-
eralization performance is related to the margin of the
examples, and that AdaBoost achieves large margins
rapidly.

The conventional AdaBoost procedure can be eas-
ily interpreted as a greedy feature selection process.
Consider the general problem of boosting, in which a
large set of classification functions are combined using
a weighted majority vote. The challenge is to associate
a large weight with each good classification function
and a smaller weight with poor functions. AdaBoost is
an aggressive mechanism for selecting a small set of
good classification functions which nevertheless have
significant variety. Drawing an analogy between weak
classifiers and features, AdaBoost is an effective pro-
cedure for searching out a small number of good “fea-
tures” which nevertheless have significant variety.

One practical method for completing this analogy is
to restrict the weak learner to the set of classification
functions each of which depend on a single feature.
In support of this goal, the weak learning algorithm is
designed to select the single rectangle feature which
best separates the positive and negative examples (this
is similar to the approach of Tieu and Viola (2000) in
the domain of image database retrieval). For each fea-
ture, the weak learner determines the optimal threshold
classification function, such that the minimum num-
ber of examples are misclassified. A weak classifier
(h(x, f, p, θ)) thus consists of a feature (f), a thresh-
old (θ) and a polarity (p) indicating the direction of the
inequality:

h(x, f, p, θ) =
{

1 if p f (x) < pθ

0 otherwise

Here x is a 24 × 24 pixel sub-window of an image.
In practice no single feature can perform the classifi-

cation task with low error. Features which are selected
early in the process yield error rates between 0.1 and
0.3. Features selected in later rounds, as the task be-
comes more difficult, yield error rates between 0.4 and
0.5. Table 1 shows the learning algorithm.

The weak classifiers that we use (thresholded single
features) can be viewed as single node decision trees.

142 Viola and Jones

Table 1. The boosting algorithm for learning a query online.
T hypotheses are constructed each using a single feature. The
final hypothesis is a weighted linear combination of the T hy-
potheses where the weights are inversely proportional to the
training errors.

• Given example images (x1, y1), . . . , (xn, yn) where
yi = 0, 1 for negative and positive examples respectively.

• Initialize weights w1,i = 1
2m , 1

2l for yi = 0, 1 respectively,
where m and l are the number of negatives and positives
respectively.

• For t = 1, . . . , T :

1. Normalize the weights, wt,i ← wt,i∑n
j=1 wt, j

2. Select the best weak classifier with respect to the
weighted error

εt = min f,p,θ

∑
i

wi | h(xi , f, p, θ) − yi | .
See Section 3.1 for a discussion of an efficient
implementation.

3. Define ht (x) = h(x, ft , pt , θt) where ft , pt , and θt

are the minimizers of εt .
4. Update the weights:

wt+1,i = wt,i β
1−ei
t

where ei = 0 if example xi is classified correctly, ei = 1
otherwise, and βt = εt

1−εt
.

• The final strong classifier is:

C(x) =

{
1

T∑
t=1

αt ht (x) ≥ 1

2

T∑
t=1

αt

0 otherwise

where αt = log 1
βt

Such structures have been called decision stumps in
the machine learning literature. The original work of
Freund and Schapire (1995) also experimented with
boosting decision stumps.

3.1. Learning Discussion

The algorithm described in Table 1 is used to select
key weak classifiers from the set of possible weak
classifiers. While the AdaBoost process is quite effi-
cient, the set of weak classifier is extraordinarily large.
Since there is one weak classifier for each distinct fea-
ture/threshold combination, there are effectively KN
weak classifiers, where K is the number of features
and N is the number of examples. In order to appre-
ciate the dependency on N , suppose that the examples
are sorted by a given feature value. With respect to the
training process any two thresholds that lie between the
same pair of sorted examples is equivalent. Therefore

the total number of distinct thresholds is N . Given a
task with N = 20000 and K = 160000 there are 3.2
billion distinct binary weak classifiers.

The wrapper method can also be used to learn a per-
ceptron which utilizes M weak classifiers (John et al.,
1994) The wrapper method also proceeds incremen-
tally by adding one weak classifier to the perceptron in
each round. The weak classifier added is the one which
when added to the current set yields a perceptron with
lowest error. Each round takes at least O(NKN) (or 60
Trillion operations); the time to enumerate all binary
features and evaluate each example using that feature.
This neglects the time to learn the perceptron weights.
Even so, the final work to learn a 200 feature classi-
fier would be something like O(MNKN) which is 1016

operations.
The key advantage of AdaBoost as a feature selec-

tion mechanism, over competitors such as the wrapper
method, is the speed of learning. Using AdaBoost a
200 feature classifier can be learned in O(MNK) or
about 1011 operations. One key advantage is that in
each round the entire dependence on previously se-
lected features is efficiently and compactly encoded
using the example weights. These weights can then be
used to evaluate a given weak classifier in constant time.

The weak classifier selection algorithm proceeds as
follows. For each feature, the examples are sorted based
on feature value. The AdaBoost optimal threshold for
that feature can then be computed in a single pass over
this sorted list. For each element in the sorted list, four
sums are maintained and evaluated: the total sum of
positive example weights T +, the total sum of negative
example weights T −, the sum of positive weights below
the current example S+ and the sum of negative weights
below the current example S−. The error for a threshold
which splits the range between the current and previous
example in the sorted list is:

e = min
(
S+ + (T − − S−), S− + (T + − S+)

,

or the minimum of the error of labeling all examples
below the current example negative and labeling the ex-
amples above positive versus the error of the converse.
These sums are easily updated as the search proceeds.

Many general feature selection procedures have been
proposed (see chapter 8 of Webb (1999) for a review).
Our final application demanded a very aggressive pro-
cess which would discard the vast majority of features.
For a similar recognition problem Papageorgiou et al.
(1998) proposed a scheme for feature selection based

Robust Real-Time Face Detection 143

on feature variance. They demonstrated good results se-
lecting 37 features out of a total 1734 features. While
this is a significant reduction, the number of features
evaluated for every image sub-window is still reason-
ably large.

Roth et al. (2000) propose a feature selection process
based on the Winnow exponential perceptron learning
rule. These authors use a very large and unusual feature
set, where each pixel is mapped into a binary vector of d
dimensions (when a particular pixel takes on the value
x , in the range [0, d − 1], the x-th dimension is set to
1 and the other dimensions to 0). The binary vectors
for each pixel are concatenated to form a single binary
vector with nd dimensions (n is the number of pixels).
The classification rule is a perceptron, which assigns
one weight to each dimension of the input vector. The
Winnow learning process converges to a solution where
many of these weights are zero. Nevertheless a very
large number of features are retained (perhaps a few
hundred or thousand).

3.2. Learning Results

While details on the training and performance of the
final system are presented in Section 5, several sim-
ple results merit discussion. Initial experiments demon-

Figure 4. Receiver operating characteristic (ROC) curve for the 200 feature classifier.

strated that a classifier constructed from 200 features
would yield reasonable results (see Fig. 4). Given a
detection rate of 95% the classifier yielded a false pos-
itive rate of 1 in 14084 on a testing dataset. This is
promising, but for a face detector to be practical for
real applications, the false positive rate must be closer
to 1 in 1,000,000.

For the task of face detection, the initial rectangle
features selected by AdaBoost are meaningful and eas-
ily interpreted. The first feature selected seems to focus
on the property that the region of the eyes is often darker
than the region of the nose and cheeks (see Fig. 5). This
feature is relatively large in comparison with the detec-
tion sub-window, and should be somewhat insensitive
to size and location of the face. The second feature se-
lected relies on the property that the eyes are darker
than the bridge of the nose.

In summary the 200-feature classifier provides ini-
tial evidence that a boosted classifier constructed from
rectangle features is an effective technique for face de-
tection. In terms of detection, these results are com-
pelling but not sufficient for many real-world tasks. In
terms of computation, this classifier is very fast, re-
quiring 0.7 seconds to scan an 384 by 288 pixel im-
age. Unfortunately, the most straightforward tech-
nique for improving detection performance, adding

144 Viola and Jones

Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation
time.

4. The Attentional Cascade

This section describes an algorithm for constructing a
cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation
time. The key insight is that smaller, and therefore more
efficient, boosted classifiers can be constructed which
reject many of the negative sub-windows while detect-
ing almost all positive instances. Simpler classifiers are
used to reject the majority of sub-windows before more
complex classifiers are called upon to achieve low false
positive rates.

Stages in the cascade are constructed by training
classifiers using AdaBoost. Starting with a two-feature
strong classifier, an effective face filter can be obtained
by adjusting the strong classifier threshold to mini-
mize false negatives. The initial AdaBoost threshold,
1
2

∑T
t=1 αt , is designed to yield a low error rate on the

training data. A lower threshold yields higher detec-
tion rates and higher false positive rates. Based on per-
formance measured using a validation training set, the
two-feature classifier can be adjusted to detect 100% of
the faces with a false positive rate of 50%. See Fig. 5 for
a description of the two features used in this classifier.

The detection performance of the two-feature clas-
sifier is far from acceptable as a face detection system.
Nevertheless the classifier can significantly reduce the

number of sub-windows that need further processing
with very few operations:

1. Evaluate the rectangle features (requires between 6
and 9 array references per feature).

2. Compute the weak classifier for each feature (re-
quires one threshold operation per feature).

3. Combine the weak classifiers (requires one multiply
per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 mi-
croprocessor instructions. It seems hard to imagine
that any simpler filter could achieve higher rejection
rates. By comparison, scanning a simple image tem-
plate would require at least 20 times as many operations
per sub-window.

The overall form of the detection process is that of
a degenerate decision tree, what we call a “cascade”
(Quinlan, 1986) (see Fig. 6). A positive result from
the first classifier triggers the evaluation of a second
classifier which has also been adjusted to achieve very
high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative
outcome at any point leads to the immediate rejection
of the sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of
sub-windows are negative. As such, the cascade at-
tempts to reject as many negatives as possible at the
earliest stage possible. While a positive instance will

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

Robust Real-Time Face Detection 145

trigger the evaluation of every classifier in the cascade,
this is an exceedingly rare event.

Much like a decision tree, subsequent classifiers are
trained using those examples which pass through all
the previous stages. As a result, the second classifier
faces a more difficult task than the first. The examples
which make it through the first stage are “harder” than
typical examples. The more difficult examples faced
by deeper classifiers push the entire receiver operat-
ing characteristic (ROC) curve downward. At a given
detection rate, deeper classifiers have correspondingly
higher false positive rates.

4.1. Training a Cascade of Classifiers

The cascade design process is driven from a set of de-
tection and performance goals. For the face detection
task, past systems have achieved good detection rates
(between 85 and 95 percent) and extremely low false
positive rates (on the order of 10−5 or 10−6). The num-
ber of cascade stages and the size of each stage must
be sufficient to achieve similar detection performance
while minimizing computation.

Given a trained cascade of classifiers, the false pos-
itive rate of the cascade is

F =
K∏

i=1

fi ,

where F is the false positive rate of the cascaded clas-
sifier, K is the number of classifiers, and fi is the false
positive rate of the i th classifier on the examples that
get through to it. The detection rate is

D =
K∏

i=1

di ,

where D is the detection rate of the cascaded classifier,
K is the number of classifiers, and di is the detection
rate of the i th classifier on the examples that get through
to it.

Given concrete goals for overall false positive and
detection rates, target rates can be determined for each
stage in the cascade process. For example a detection
rate of 0.9 can be achieved by a 10 stage classifier if
each stage has a detection rate of 0.99 (since 0.9 ≈
0.9910). While achieving this detection rate may sound
like a daunting task, it is made significantly easier by the
fact that each stage need only achieve a false positive
rate of about 30% (0.3010 ≈ 6 × 10−6).

The number of features evaluated when scanning
real images is necessarily a probabilistic process. Any
given sub-window will progress down through the cas-
cade, one classifier at a time, until it is decided that
the window is negative or, in rare circumstances, the
window succeeds in each test and is labelled positive.
The expected behavior of this process is determined
by the distribution of image windows in a typical test
set. The key measure of each classifier is its “positive
rate”, the proportion of windows which are labelled as
potentially containing a face. The expected number of
features which are evaluated is:

N = n0 +
K∑

i=1

(
ni

∏
j<i

p j

)

where N is the expected number of features evaluated,
K is the number of classifiers, pi is the positive rate of
the i th classifier, and ni are the number of features in the
i th classifier. Interestingly, since faces are extremely
rare, the “positive rate” is effectively equal to the false
positive rate.

The process by which each element of the cascade
is trained requires some care. The AdaBoost learning
procedure presented in Section 3 attempts only to min-
imize errors, and is not specifically designed to achieve
high detection rates at the expense of large false positive
rates. One simple, and very conventional, scheme for
trading off these errors is to adjust the threshold of the
perceptron produced by AdaBoost. Higher thresholds
yield classifiers with fewer false positives and a lower
detection rate. Lower thresholds yield classifiers with
more false positives and a higher detection rate. It is
not clear, at this point, whether adjusting the threshold
in this way preserves the training and generalization
guarantees provided by AdaBoost.

The overall training process involves two types of
tradeoffs. In most cases classifiers with more features
will achieve higher detection rates and lower false pos-
itive rates. At the same time classifiers with more fea-
tures require more time to compute. In principle one
could define an optimization framework in which

• the number of classifier stages,
• the number of features, ni , of each stage,
• the threshold of each stage

are traded off in order to minimize the expected num-
ber of features N given a target for F and D. Unfortu-
nately finding this optimum is a tremendously difficult
problem.

146 Viola and Jones

Table 2. The training algorithm for building a cascaded detector.

• User selects values for f , the maximum acceptable false
positive rate per layer and d, the minimum acceptable detection
rate per layer.

• User selects target overall false positive rate, Ftarget .
• P = set of positive examples
• N = set of negative examples
• F0 = 1.0; D0 = 1.0
• i = 0
• while Fi > Ftarget

– i ← i + 1
– ni = 0; Fi = Fi−1

– while Fi > f × Fi−1

∗ ni ← ni + 1
∗ Use P and N to train a classifier with ni features using

AdaBoost
∗ Evaluate current cascaded classifier on validation set to

determine Fi and Di .
∗ Decrease threshold for the i th classifier until the current

cascaded classifier has a detection rate of at least
d × Di−1 (this also affects Fi)

– N ← ∅
– If Fi > Ftarget then evaluate the current cascaded detector on

the set of non-face images and put any false detections into
the set N

In practice a very simple framework is used to pro-
duce an effective classifier which is highly efficient.
The user selects the maximum acceptable rate for fi

and the minimum acceptable rate for di . Each layer of
the cascade is trained by AdaBoost (as described in
Table 1) with the number of features used being in-
creased until the target detection and false positive rates
are met for this level. The rates are determined by test-
ing the current detector on a validation set. If the overall
target false positive rate is not yet met then another layer
is added to the cascade. The negative set for training
subsequent layers is obtained by collecting all false de-
tections found by running the current detector on a set
of images which do not contain any instances of faces.
This algorithm is given more precisely in Table 2.

4.2. Simple Experiment

In order to explore the feasibility of the cascade ap-
proach two simple detectors were trained: a mono-
lithic 200-feature classifier and a cascade of ten
20-feature classifiers. The first stage classifier in the
cascade was trained using 5000 faces and 10000 non-
face sub-windows randomly chosen from non-face im-
ages. The second stage classifier was trained on the

same 5000 faces plus 5000 false positives of the first
classifier. This process continued so that subsequent
stages were trained using the false positives of the pre-
vious stage.

The monolithic 200-feature classifier was trained on
the union of all examples used to train all the stages
of the cascaded classifier. Note that without reference
to the cascaded classifier, it might be difficult to se-
lect a set of non-face training examples to train the
monolithic classifier. We could of course use all possi-
ble sub-windows from all of our non-face images, but
this would make the training time impractically long.
The sequential way in which the cascaded classifier is
trained effectively reduces the non-face training set by
throwing out easy examples and focusing on the “hard”
ones.

Figure 7 gives the ROC curves comparing the per-
formance of the two classifiers. It shows that there is
little difference between the two in terms of accuracy.
However, there is a big difference in terms of speed.
The cascaded classifier is nearly 10 times faster since
its first stage throws out most non-faces so that they are
never evaluated by subsequent stages.

4.3. Detector Cascade Discussion

There is a hidden benefit of training a detector as a se-
quence of classifiers which is that the effective number
of negative examples that the final detector sees can be
very large. One can imagine training a single large clas-
sifier with many features and then trying to speed up
its running time by looking at partial sums of features
and stopping the computation early if a partial sum is
below the appropriate threshold. One drawback of such
an approach is that the training set of negative exam-
ples would have to be relatively small (on the order of
10,000 to maybe 100,000 examples) to make training
feasible. With the cascaded detector, the final layers of
the cascade may effectively look through hundreds of
millions of negative examples in order to find a set of
10,000 negative examples that the earlier layers of the
cascade fail on. So the negative training set is much
larger and more focused on the hard examples for a
cascaded detector.

A notion similar to the cascade appears in the face
detection system described by Rowley et al. (1998).
Rowley et al. trained two neural networks. One network
was moderately complex, focused on a small region of
the image, and detected faces with a low false positive
rate. They also trained a second neural network which

Robust Real-Time Face Detection 147

Figure 7. ROC curves comparing a 200-feature classifier with a cascaded classifier containing ten 20-feature classifiers. Accuracy is not
significantly different, but the speed of the cascaded classifier is almost 10 times faster.

was much faster, focused on a larger regions of the
image, and detected faces with a higher false positive
rate. Rowley et al. used the faster second network to
prescreen the image in order to find candidate regions
for the slower more accurate network. Though it is
difficult to determine exactly, it appears that Rowley
et al.’s two network face system is the fastest existing
face detector.7 Our system uses a similar approach, but
it extends this two stage cascade to include 38 stages.

The structure of the cascaded detection process is
essentially that of a degenerate decision tree, and as
such is related to the work of Amit and Geman (1999).
Unlike techniques which use a fixed detector, Amit and
Geman propose an alternative point of view where un-
usual co-occurrences of simple image features are used
to trigger the evaluation of a more complex detection
process. In this way the full detection process need not
be evaluated at many of the potential image locations
and scales. While this basic insight is very valuable,
in their implementation it is necessary to first evaluate
some feature detector at every location. These features
are then grouped to find unusual co-occurrences. In
practice, since the form of our detector and the fea-
tures that it uses are extremely efficient, the amortized
cost of evaluating our detector at every scale and lo-

cation is much faster than finding and grouping edges
throughout the image.

In recent work Fleuret and Geman (2001) have pre-
sented a face detection technique which relies on a
“chain” of tests in order to signify the presence of a
face at a particular scale and location. The image prop-
erties measured by Fleuret and Geman, disjunctions
of fine scale edges, are quite different than rectangle
features which are simple, exist at all scales, and are
somewhat interpretable. The two approaches also differ
radically in their learning philosophy. Because Fleuret
and Geman’s learning process does not use negative
examples their approach is based more on density es-
timation, while our detector is purely discriminative.
Finally the false positive rate of Fleuret and Geman’s
approach appears to be higher than that of previous ap-
proaches like Rowley et al. and this approach. In the
published paper the included example images each had
between 2 and 10 false positives. For many practical
tasks, it is important that the expected number of false
positives in any image be less than one (since in many
tasks the expected number of true positives is less than
one as well). Unfortunately the paper does not report
quantitative detection and false positive results on stan-
dard datasets.

148 Viola and Jones

5. Results

This section describes the final face detection system.
The discussion includes details on the structure and
training of the cascaded detector as well as results on
a large real-world testing set.

5.1. Training Dataset

The face training set consisted of 4916 hand labeled
faces scaled and aligned to a base resolution of 24 by
24 pixels. The faces were extracted from images down-
loaded during a random crawl of the World Wide Web.
Some typical face examples are shown in Fig. 8. The
training faces are only roughly aligned. This was done
by having a person place a bounding box around each
face just above the eyebrows and about half-way be-
tween the mouth and the chin. This bounding box was
then enlarged by 50% and then cropped and scaled to
24 by 24 pixels. No further alignment was done (i.e.
the eyes are not aligned). Notice that these examples
contain more of the head than the examples used by

Figure 8. Example of frontal upright face images used for training.

Rowley et al. (1998) or Sung and Poggio (1998). Ini-
tial experiments also used 16 by 16 pixel training im-
ages in which the faces were more tightly cropped,
but got slightly worse results. Presumably the 24 by
24 examples include extra visual information such as
the contours of the chin and cheeks and the hair line
which help to improve accuracy. Because of the nature
of the features used, the larger sized sub-windows do
not slow performance. In fact, the additional informa-
tion contained in the larger sub-windows can be used
to reject non-faces earlier in the detection cascade.

5.2. Structure of the Detector Cascade

The final detector is a 38 layer cascade of classifiers
which included a total of 6060 features.

The first classifier in the cascade is constructed us-
ing two features and rejects about 50% of non-faces
while correctly detecting close to 100% of faces. The
next classifier has ten features and rejects 80% of non-
faces while detecting almost 100% of faces. The next
two layers are 25-feature classifiers followed by three
50-feature classifiers followed by classifiers with a

Robust Real-Time Face Detection 149

variety of different numbers of features chosen accord-
ing to the algorithm in Table 2. The particular choices
of number of features per layer was driven through
a trial and error process in which the number of fea-
tures were increased until a significant reduction in the
false positive rate could be achieved. More levels were
added until the false positive rate on the validation set
was nearly zero while still maintaining a high correct
detection rate. The final number of layers, and the size
of each layer, are not critical to the final system perfor-
mance. The procedure we used to choose the number
of features per layer was guided by human intervention
(for the first 7 layers) in order to reduce the training time
for the detector. The algorithm described in Table 2 was
modified slightly to ease the computational burden by
specifying a minimum number of features per layer by
hand and by adding more than 1 feature at a time. In
later layers, 25 features were added at a time before
testing on the validation set. This avoided having to
test the detector on the validation set for every single
feature added to a classifier.

The non-face sub-windows used to train the first
level of the cascade were collected by selecting ran-
dom sub-windows from a set of 9500 images which
did not contain faces. The non-face examples used to
train subsequent layers were obtained by scanning the
partial cascade across large non-face images and col-
lecting false positives. A maximum of 6000 such non-
face sub-windows were collected for each layer. There
are approximately 350 million non-face sub-windows
contained in the 9500 non-face images.

Training time for the entire 38 layer detector was on
the order of weeks on a single 466 MHz AlphaStation
XP900. We have since parallelized the algorithm to
make it possible to train a complete cascade in about a
day.

5.3. Speed of the Final Detector

The speed of the cascaded detector is directly related
to the number of features evaluated per scanned sub-
window. As discussed in Section 4.1, the number of fea-
tures evaluated depends on the images being scanned.
Since a large majority of the sub-windows are dis-
carded by the first two stages of the cascade, an av-
erage of 8 features out of a total of 6060 are eval-
uated per sub-window (as evaluated on the MIT +
CMU (Rowley et al., 1998). On a 700 Mhz Pentium
III processor, the face detector can process a 384 by
288 pixel image in about .067 seconds (using a starting

scale of 1.25 and a step size of 1.5 described below).
This is roughly 15 times faster than the Rowley-Baluja-
Kanade detector (Rowley et al., 1998) and about 600
times faster than the Schneiderman-Kanade detector
(Schneiderman and Kanade, 2000).

5.4. Image Processing

All example sub-windows used for training were vari-
ance normalized to minimize the effect of different
lighting conditions. Normalization is therefore neces-
sary during detection as well. The variance of an image
sub-window can be computed quickly using a pair of
integral images. Recall that σ 2 = m2 − 1

N

∑
x2, where

σ is the standard deviation, m is the mean, and x is
the pixel value within the sub-window. The mean of a
sub-window can be computed using the integral image.
The sum of squared pixels is computed using an integral
image of the image squared (i.e. two integral images
are used in the scanning process). During scanning the
effect of image normalization can be achieved by post
multiplying the feature values rather than operating on
the pixels.

5.5. Scanning the Detector

The final detector is scanned across the image at multi-
ple scales and locations. Scaling is achieved by scaling
the detector itself, rather than scaling the image. This
process makes sense because the features can be eval-
uated at any scale with the same cost. Good detection
results were obtained using scales which are a factor of
1.25 apart.

The detector is also scanned across location. Sub-
sequent locations are obtained by shifting the window
some number of pixels �. This shifting process is af-
fected by the scale of the detector: if the current scale is
s the window is shifted by [s�], where [] is the round-
ing operation.

The choice of � affects both the speed of the de-
tector as well as accuracy. Since the training images
have some translational variability the learned detector
achieves good detection performance in spite of small
shifts in the image. As a result the detector sub-window
can be shifted more than one pixel at a time. However,
a step size of more than one pixel tends to decrease the
detection rate slightly while also decreasing the number
of false positives. We present results for two different
step sizes.

150 Viola and Jones

5.6. Integration of Multiple Detections

Since the final detector is insensitive to small changes
in translation and scale, multiple detections will usually
occur around each face in a scanned image. The same
is often true of some types of false positives. In practice
it often makes sense to return one final detection per
face. Toward this end it is useful to postprocess the
detected sub-windows in order to combine overlapping
detections into a single detection.

In these experiments detections are combined in a
very simple fashion. The set of detections are first par-
titioned into disjoint subsets. Two detections are in the
same subset if their bounding regions overlap. Each
partition yields a single final detection. The corners of
the final bounding region are the average of the corners
of all detections in the set.

In some cases this postprocessing decreases the num-
ber of false positives since an overlapping subset of
false positives is reduced to a single detection.

5.7. Experiments on a Real-World Test Set

We tested our system on the MIT + CMU frontal face
test set (Rowley et al., 1998). This set consists of 130

Figure 9. ROC curves for our face detector on the MIT + CMU test set. The detector was run once using a step size of 1.0 and starting scale
of 1.0 (75,081,800 sub-windows scanned) and then again using a step size of 1.5 and starting scale of 1.25 (18,901,947 sub-windows scanned).
In both cases a scale factor of 1.25 was used.

images with 507 labeled frontal faces. A ROC curve
showing the performance of our detector on this test
set is shown in Fig. 9. To create the ROC curve the
threshold of the perceptron on the final layer classifier
is adjusted from +∞ to −∞. Adjusting the threshold to
+∞ will yield a detection rate of 0.0 and a false positive
rate of 0.0. Adjusting the threshold to −∞, however,
increases both the detection rate and false positive rate,
but only to a certain point. Neither rate can be higher
than the rate of the detection cascade minus the final
layer. In effect, a threshold of −∞ is equivalent to re-
moving that layer. Further increasing the detection and
false positive rates requires decreasing the threshold
of the next classifier in the cascade. Thus, in order to
construct a complete ROC curve, classifier layers are
removed. We use the number of false positives as op-
posed to the rate of false positives for the x-axis of
the ROC curve to facilitate comparison with other sys-
tems. To compute the false positive rate, simply divide
by the total number of sub-windows scanned. For the
case of � = 1.0 and starting scale = 1.0, the number
of sub-windows scanned is 75,081,800. For � = 1.5
and starting scale = 1.25, the number of sub-windows
scanned is 18,901,947.

Unfortunately, most previous published results on
face detection have only included a single operating

Robust Real-Time Face Detection 151

Table 3. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130
images and 507 faces.

False detections

Detector 10 31 50 65 78 95 167 422

Viola-Jones 76.1% 88.4% 91.4% 92.0% 92.1% 92.9% 93.9% 94.1%

Viola-Jones (voting) 81.1% 89.7% 92.1% 93.1% 93.1% 93.2% 93.7% –

Rowley-Baluja-Kanade 83.2% 86.0% – – – 89.2% 90.1% 89.9%

Schneiderman-Kanade – – – 94.4% – – – –

Roth-Yang-Ahuja – – – – (94.8%) – – –

regime (i.e. single point on the ROC curve). To make
comparison with our detector easier we have listed our
detection rate for the same false positive rate reported
by the other systems. Table 3 lists the detection rate
for various numbers of false detections for our system
as well as other published systems. For the Rowley-
Baluja-Kanade results (Rowley et al., 1998), a number
of different versions of their detector were tested yield-
ing a number of different results. While these various
results are not actually points on a ROC curve for a
particular detector, they do indicate a number of dif-
ferent performance points that can be achieved with
their approach. They did publish ROC curves for two
of their detectors, but these ROC curves did not rep-
resent their best results. For the Roth-Yang-Ahuja de-
tector (Roth et al., 2000), they reported their result on
the MIT + CMU test set minus 5 images containing
line drawn faces removed. So their results are for a sub-
set of the MIT + CMU test set containing 125 images
with 483 faces. Presumably their detection rate would
be lower if the full test set was used. The parenthe-
ses around their detection rate indicates this slightly
different test set. The Sung and Poggio face detec-
tor (Sung and Poggio, 1998) was tested on the MIT
subset of the MIT + CMU test set since the CMU
portion did not exist yet. The MIT test set contains
23 images with 149 faces. They achieved a detection
rate of 79.9% with 5 false positives. Our detection
rate with 5 false positives is 77.8% on the MIT test
set.

Figure 10 shows the output of our face detector on
some test images from the MIT + CMU test set.

5.7.1. A Simple Voting Scheme Further Improves
Results. The best results were obtained through the
combination of three detectors trained using different
initial negative examples, slightly different weighting

on negative versus positive errors, and slightly different
criteria for trading off false positives for classifier size.
These three systems performed similarly on the final
task, but in some cases errors were different. The detec-
tion results from these three detectors were combined
by retaining only those detections where at least 2 out
of 3 detectors agree. This improves the final detection
rate as well as eliminating more false positives. Since
detector errors are not uncorrelated, the combination
results in a measurable, but modest, improvement over
the best single detector.

5.7.2. Failure Modes. By observing the performance
of our face detector on a number of test images we have
noticed a few different failure modes.

The face detector was trained on frontal, upright
faces. The faces were only very roughly aligned so
there is some variation in rotation both in plane and out
of plane. Informal observation suggests that the face
detector can detect faces that are tilted up to about ±15
degrees in plane and about ±45 degrees out of plane
(toward a profile view). The detector becomes unreli-
able with more rotation than this.

We have also noticed that harsh backlighting in
which the faces are very dark while the background
is relatively light sometimes causes failures. It is in-
teresting to note that using a nonlinear variance nor-
malization based on robust statistics to remove out-
liers improves the detection rate in this situation. The
problem with such a normalization is the greatly in-
creased computational cost within our integral image
framework.

Finally, our face detector fails on significantly oc-
cluded faces. If the eyes are occluded for example, the
detector will usually fail. The mouth is not as important
and so a face with a covered mouth will usually still be
detected.

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection

Robust Real-Time Face Detection 153

significantly. Using the integral image, face detection
is completed in almost the same time as it takes for an
image pyramid to be computed.

While the integral image should also have immedi-
ate use for other systems which have used Haar-like
features such as Papageorgiou et al. (1998), it can fore-
seeably have impact on any task where Haar-like fea-
tures may be of value. Initial experiments have shown
that a similar feature set is also effective for the task
of parameter estimation, where the expression of a
face, the position of a head, or the pose of an object is
determined.

The second contribution of this paper is a simple
and efficient classifier built from computationally ef-
ficient features using AdaBoost for feature selection.
This classifier is clearly an effective one for face detec-
tion and we are confident that it will also be effective in
other domains such as automobile or pedestrian detec-
tion. Furthermore, the idea of an aggressive and effec-
tive technique for feature selection should have impact
on a wide variety of learning tasks. Given an effective
tool for feature selection, the system designer is free to
define a very large and very complex set of features as
input for the learning process. The resulting classifier
is nevertheless computationally efficient, since only a
small number of features need to be evaluated during
run time. Frequently the resulting classifier is also quite
simple; within a large set of complex features it is more
likely that a few critical features can be found which
capture the structure of the classification problem in a
straightforward fashion.

The third contribution of this paper is a technique for
constructing a cascade of classifiers which radically
reduces computation time while improving detection
accuracy. Early stages of the cascade are designed to
reject a majority of the image in order to focus subse-
quent processing on promising regions. One key point
is that the cascade presented is quite simple and ho-
mogeneous in structure. Previous approaches for at-
tentive filtering, such as Itti et al. (1998) propose a
more complex and heterogeneous mechanism for fil-
tering. Similarly Amit and Geman (1999) propose a
hierarchical structure for detection in which the stages
are quite different in structure and processing. A ho-
mogeneous system, besides being easy to implement
and understand, has the advantage that simple tradeoffs
can be made between processing time and detection
performance.

Finally this paper presents a set of detailed exper-
iments on a difficult face detection dataset which has

been widely studied. This dataset includes faces under
a very wide range of conditions including: illumina-
tion, scale, pose, and camera variation. Experiments on
such a large and complex dataset are difficult and time
consuming. Nevertheless systems which work under
these conditions are unlikely to be brittle or limited to a
single set of conditions. More importantly conclusions
drawn from this dataset are unlikely to be experimental
artifacts.

Acknowledgments

The authors would like to thank T.M. Murali, Jim Rehg,
Tat-Jen Cham, Rahul Sukthankar, Vladimir Pavlovic,
and Thomas Leung for the their helpful comments.
Henry Rowley was extremely helpful in providing im-
plementations of his face detector for comparison with
our own.

Notes

1. Supervised refers to the fact that the attentional operator is trained
to detect examples of a particular class.

2. Henry Rowley very graciously supplied us with implementations
of his detection system for direct comparison. Reported results
are against his fastest system. It is difficult to determine from
the published literature, but the Rowley-Baluja-Kanade detector
is widely considered the fastest detection system and has been
heavily tested on real-world problems.

3. A complete basis has no linear dependence between basis ele-
ments and has the same number of elements as the image space,
in this case 576. The full set of 160,000 features is many times
over-complete.

4. There is a close relation to “summed area tables” as used in graph-
ics (Crow, 1984). We choose a different name here in order to em-
phasize its use for the analysis of images, rather than for texture
mapping.

5. The availability of custom hardware and the appearance of spe-
cial instruction sets like Intel MMX can change this analysis.
It is nevertheless instructive to compare performance assuming
conventional software algorithms.

6. In the case where the weak learner is a perceptron learning al-
gorithm, the final boosted classifier is a two layer perceptron. A
two layer perceptron is in principle much more powerful than any
single layer perceptron.

7. Among other published face detection systems some are poten-
tially faster. These have either neglected to discuss performance
in detail, or have never published detection and false positive rates
on a large and difficult training set.

References

Amit, Y. and Geman, D. 1999. A computational model for visual
selection. Neural Computation, 11:1691–1715.

154 Viola and Jones

Crow, F. 1984. Summed-area tables for texture mapping. In Proceed-
ings of SIGGRAPH, 18(3):207–212.

Fleuret, F. and Geman, D. 2001. Coarse-to-fine face detection. Int.
J. Computer Vision, 41:85–107.

Freeman, W.T. and Adelson, E.H. 1991. The design and use of steer-
able filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(9):891–906.

Freund, Y. and Schapire, R.E. 1995. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. In Com-
putational Learning Theory: Eurocolt 95, Springer-Verlag, pp.
23–37.

Greenspan, H., Belongie, S., Gooodman, R., Perona, P., Rakshit, S.,
and Anderson, C. 1994. Overcomplete steerable pyramid filters
and rotation invariance. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

Itti, L., Koch, C., and Niebur, E. 1998. A model of saliency-based
visual attention for rapid scene analysis. IEEE Patt. Anal. Mach.
Intell., 20(11):1254-–1259.

John, G., Kohavi, R., and Pfeger, K. 1994. Irrelevant features and
the subset selection problem. In Machine Learning Conference
Proceedings.

Osuna, E., Freund, R., and Girosi, F. 1997a. Training support
vector machines: An application to face detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Osuna, E., Freund, R., and Girosi, F. 1997b. Training support vector
machines: an application to face detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

Papageorgiou, C., Oren, M., and Poggio, T. 1998. A general frame-
work for object detection. In International Conference on Com-
puter Vision.

Quinlan, J. 1986. Induction of decision trees. Machine Learning,
1:81–106.

Roth, D., Yang, M., and Ahuja, N. 2000. A snowbased face detector.
In Neural Information Processing 12.

Rowley, H., Baluja, S., and Kanade, T. 1998. Neural network-based
face detection. IEEE Patt. Anal. Mach. Intell., 20:22–38.

Schapire, R.E., Freund, Y., Bartlett, P., and Lee, W.S. 1997. Boost-
ing the margin: A new explanation for the effectiveness of voting
methods. In Proceedings of the Fourteenth International Confer-
ence on Machine Learning.

Schapire, R.E., Freund, Y., Bartlett, P., and Lee, W.S. 1998. Boost-
ing the margin: A new explanation for the effectiveness of voting
methods. Ann. Stat., 26(5):1651–1686.

Schneiderman, H. and Kanade, T. 2000. A statistical method for
3D object detection applied to faces and cars. In International
Conference on Computer Vision.

Simard, P.Y., Bottou, L., Haffner, P., and LeCun, Y. (1999). Boxlets:
A fast convolution algorithm for signal processing and neural net-
works. In M. Kearns, S. Solla, and D. Cohn (Eds.), Advances
in Neural Information Processing Systems, vol. 11, pp. 571–
577.

Sung, K. and Poggio, T. 1998. Example-based learning for view-
based face detection. IEEE Patt. Anal. Mach. Intell., 20:39–51.

Tieu, K. and Viola, P. 2000. Boosting image retrieval. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition.

Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., and Nuflo,
F. 1995. Modeling visual-attention via selective tuning. Artificial
Intelligence Journal, 78(1/2):507–545.

Webb, A. 1999. Statistical Pattern Recognition. Oxford University
Press: New York.

